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We report U-series disequilibrium data in the youngest volcanic rocks from Maanshan, Dayingshan and
Heikongshan volcanoes in the Tengchong volcanic field, representing the only 3 volcanoes from the Indo-Asian
suture zone (southwestern Tibet to western Yunnan) that are young enough to preserve 238U–230Th disequilib-
rium. The most striking feature of these young Tengchong lavas is their extremely low (230Th/232Th) (0.303 to
0.376) and (238U/232Th) (0.289 to 0.360) activity ratios (or ultra-high Th/U concentration ratio). These young
lavas also show small to moderate (4% to 10%) 230Th excesses. Such 230Th excesses, together with tomographic
results, suggest that partial melting initiated at depths greater than 75 km in the garnet stability field. U-series
isotope data, together with major and trace element and Nd–Sr–Pb isotope data, indicate that Tengchong lavas
are derived frompartialmelting of an enriched subcontinental lithosphericmantle. The ultra-highmelt Th/U con-
centration ratios of 9.5 ± 0.7 further indicate recycling of continentally derived clay-rich mature sediments or
mudstones into the SE Tibetan mantle. The materials with ultra-high Th/U ratios may come from the clay-rich
mature sediments from Indian Ocean or Neo-Tethyan Ocean or the mudstones/shales from the subducted
Indian continental plate.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Recent extensive petrological and Nd–Sr–Pb isotopic studies of
widespread Cenozoic post-collisional potassic lavas on the Tibetan
Plateau (Chen et al., 2012; Chung et al., 2005; Ding et al., 2003; Flower
et al., 1998; Gao et al., 2007; Guo et al., 2006; Mo et al., 2007; Turner
et al., 1996; Wang et al., 2001; Williams et al., 2004; Zhou et al., 2012)
have firmly established the mantle source heterogeneity below the
Tibetan Plateau. However, our understanding of the melting processes
and the cause of the heterogeneity in this particular tectonic setting is
still unclear. In comparison to long-lived Nd–Sr–Pb isotope systems,
short-lived 238U–230Th disequilibrium in young volcanic rocks is partic-
ularly effective and sensitive in studying melting processes due to
similar short time scales between 238U–230Th disequilibrium and
partial melting processes (Asmerom and Edwards, 1995; Elliott, 1997;
McKenzie, 1985; Sims et al., 1999).

In spite of widespread presence of Cenozoic post-collisional volcanic
rocks on the Tibetan Plateau, Holocene volcanism only occurred at
Tengchong volcanic field in southeast Tibetan Plateau and Ashikule
volcanic field in northwest Tibetan Plateau (Fig. 1). These Holocene
volcanic rocks provide ideal opportunities for studyingmelting beneath
Tibetan Plateau using 238U–230Th disequilibrium methods.
ghts reserved.
The Tengchong volcanic field is located along the southeastern edge
of the Tibetan Plateau near the border between China and Burma
(Fig. 1). The volcanism at Tengchong commenced at about 5 Ma, long
after the start of the India–Asia collision (65 Ma), and has continued
to the present day, spanning the entire Quaternary period (Wang
et al., 2006; Zhu et al., 1983). Volcanic activity can be divided into
three stages (Jiang, 1998): (1) Middle–Late Pliocene basalt, (2) Early
Pleistocene pyroclastic rocks of trachydacitic composition, and
(3) Holocene trachybasalts, basaltic trachyandesites, trachyandesite
and trachydacites. The localities of these three Holocene (b10 ka,
thousand years) volcanoes are given in Fig. 1. Several hot springs are
still active in the Tengchong area and a historic (1609 AD) eruption
has been reported at Dayingshan (Liu et al., 1992). A K–Ar age of
groundmass from Maanshan lavas is 13 ± 6 ka (Li et al., 2000) and
the thermoluminescence (TL) age of the lavas from the hilltop of the
Maanshan flow is 4 ± 1 ka (Yin and Li, 2000). A similar young age
was determined by 14C dating (3800± 140 years BP) of organic matter
in fluvial sediments that are overlain by a Maanshan flow. Thus, the
available field observation and geochronological data are consistent
with the occurrence of volcanic activity during the Holocene period.
Note that for Holocene samples, the exact eruption ages are not critical
as any age correction to the 238U–230Th disequilibrium data is minimal.

The crust below Tengchong is ~40 km thick and the structure is
dominated by north–south trending strike-slip faults (Bai et al., 2001;
Wang and Gang, 2004). The basement rocks are Paleozoic gneisses,
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Fig. 1. (A) Regional map showing major tectonic features in Asia. Tengchong volcanic field is located on the southeast edge of the Tibetan Plateau. (B) Map showing the locality of the
Tengchong volcanic field and regional tectonics. (C)Map showing the location of three young volcanoes: Maanshan, Dayingshan and Heikongshan. Q: Pleistocene volcanics; N2: Miocene
volcanics.
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Carboniferous sandstones, 76 to 235 Ma Mesozoic granite and 32 to 52
Ma Cenozoic granites (Huang and Jiang, 2000).

The Holocene volcanic rocks from Tengchong are very fresh. They
are fine-grained with a groundmass of volcanic glass and plagioclase
microlites and porphyritic (3% to 10% clinopyroxene and plagioclase
phenocrysts). Zircons have been observed in some trachyandesites
(Tucker et al., 2013; Zou et al., 2010). The rocks of the Tengchong volca-
nic field have high-K calc-alkaline compositions. Available elemental
and Nd, Sr and Pb isotopes for Tengchong volcanic rocks indicate their
origin from an enriched mantle source (Chen et al., 2002; Mu et al.,
1987; Wang et al., 2006; Zhou et al., 2012; Zhu et al., 1983). However,
the melting processes and the characteristics of the enriched mantle
are not clear. In this paper we use whole-rock 238U–230Th disequilibri-
um to provide new insights into the source characteristics, magma
genesis and melting processes for the young Tengchong volcanoes.
Major and trace element abundances and selectedNd, Sr and Pb isotopic
compositions are also used to investigate the petrogenesis of Tengchong
lavas. We will show the important role played by subducted clay-rich
mature sediments, and their melts, in the formation of enriched mantle
below the SE Tibetan Plateau.

2. Analytical methods

For the determination of whole-rock U–Th concentration and isoto-
pic compositions, sample powders and spikes were digested in Teflon
beakers, and U and Th were separated from matrix using a chemical
procedure described in Shen et al. (2003). Isotopic measurements
were conducted using a multi-collector inductively coupled plasma
mass spectrometer (MC-ICP-MS), Thermo Fisher Neptune at the High-
Precision Mass Spectrometry and Environment Change Laboratory
(HISPEC), Department of Geosciences, National Taiwan University
(Shen et al., 2012). A triple-spike, 229Th–233U–236U, isotope dilution
method was employed to correct mass bias and determine uranium
concentration (Shen et al., 2002). Uncertainties in concentration and
isotopic data include corrections for blanks, instrumental fractionation,
multiplier dark noise, spectral interferences, and errors associated
with quantifying the isotope composition in the spike solution.
Table Mountain Latite (TML) is used as a rock standard. Measured
230Th/238U activity ratio [(230Th/238U)] for TML is 0.995± 0.005, within
238U–230Th secular equilibrium.

Major and trace elements were measured by XRF (Johnson et al.,
1999) and quadruple ICP-MS, respectively, at the GeoAnalytical Center
at the Washington State University. For trace element analysis by
quadruple ICP-MS, a combination fusion–dissolution method is used
in order to effectively decompose refractory mineral phases (such as
zircons) and remove the bulk of unwantedmatrix elements. The proce-
dure includes a low-dilution fusionwith di-lithium tetraborate for com-
plete sample digestion, followed by an open-vial mixed acid digestion.
Long-term precision for this method is typically better than 5% (RSD)
for the REEs and better than 10% for other trace elements. Accuracy
and precision data are listed in Table A1. Recommended values for
rock standards BCR-1 and AGV-1 in Table A1 are from Govindaraju
(1994).

As there are previous Nd–Sr–Pb isotope studies of Tengchong volca-
nic rocks, only a few samples weremeasured for these isotopes. Analyt-
ical methods using thermal ionization mass spectrometry have been
documented elsewhere (Zou et al., 2003, 2008). Nd and Sr isotopic com-
positions were normalized to 146Nd/144Nd = 0.7219 and 86Sr/88Sr =
0.1194, respectively. The measured Nd and Sr isotope standard values
are 143Nd/144Nd = 0.511843 ± 13 (n = 24) for La Jolla and 87Sr/86Sr =
0.710239 ± 16 (n = 13) for NBS 987. Replicate analyses of Pb isotope
standard NBS 981 give 206Pb/204Pb = 16.896 ± 0.013, 207Pb/204Pb =
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15.435 ± 0.014, and 208Pb/204Pb = 36.525 ± 0.041. Relative to the
following values for NBS 981: 206Pb/204Pb = 16.9356, 207Pb/204Pb =
15.4891, and 208Pb/204Pb = 36.7006 (Todt et al., 1996), Pb isotopic data
in samples were corrected for mass fractionation of 0.118% per atomic
mass unit (AMU) for 206Pb/204Pb, 0.117% per AMU for 207Pb/204Pb, and
0.119% per AMU for 208Pb/204Pb. Errors of all instruments are two
standard deviations (2σ) unless otherwise noted.

3. Results

3.1. Major and trace elements and Nd, Sr and Pb isotopes

Tengchong samples have SiO2 ranging from 50.5% to 62.2% and are
potassium-rich with K2O ranging from 1.8% to 4.1% (Table 1).

In the TAS diagram (Fig. 2), after recalculation on an anhydrous
basis, one sample (HE9740-1) from Heikongshan plots as a trachy-
basalt, two samples (MA9738-1 from Maanshan and HE1009 from
Heikongshan) are basaltic trachyandesites, and all other samples classi-
fy as trachyandesites. Note that these youngest Tengchong samples
span much of the compositional range of other published data for the
whole Tengchong volcanic field except for the highly evolved older
(1 Ma) dacites. All samples show a clear calc-alkaline trend (Fig. 3a)
and belong to the high-K calc-alkaline series (Fig. 3b). They are not
shoshonites, unlike much of the volcanism on the main parts of the
Tibetan Plateau.

The Tengchong samples are enriched in incompatible elements. All
samples show LREE enrichment over HREE (Fig. 4). Except for
two sampleswith low SiO2 fromHeikongshan, all samples displaymod-
erate negative Eu anomalies, indicating fractional crystallization of
plagioclase. In the normalized trace element diagram (Fig. 5), all sam-
ples have pronounced positive peaks in Th and negative anomalies in
Nb and Ta.

Nd, Sr and Pb isotope data for our samples are within the range pre-
viously reported for TengchongHolocene and pre-Holocene lavas (Chen
et al., 2002;Wang et al., 2006; Zhao and Fan, 2010; Zhu et al., 1983). The
Tengchong samples have high 87Sr/86Sr and low 143Nd/144Nd (Fig. 6).
Their εNd varies from−4.4 to−10.1, showing enriched characteristics.

The Tengchong volcanics have highly radiogenic 208Pb/204Pb (39.1 to
39.3) and 207Pb/204Pb (15.65 to 15.70) but relatively unradiogenic
206Pb/204Pb (18.1 to 18.2). Pb radiogenic ratio 208Pb*/206Pb* (Allegre
et al., 1986) is considered as an indicator of Th/U ratios on the time
scale of hundreds of millions of years. The Tengchong samples have
208Pb*/206Pb* of 1.09 to 1.10, indicating long-term Th enrichment over
U. Time-integrated 232Th/238U in the source, κPb from Pb isotopes
(Galer and O'Nions, 1985), is 4.4 to 4.5, significantly lower than κTh
from Th isotopes (ranging from 8.3 to 10.3). κTh from Th isotopes repre-
sents recent 232Th/238Uwhile κPb fromPb isotopes represents long-term
232Th/238U.

3.2. 238U–230Th disequilibrium

U–Th isotope data are presented in Table 2. Themost striking feature
of the U–Th data is their extremely low (230Th/232Th) and (238U/232Th)
ratios (Fig. 7), as compared to the values of the continental volcanic
rocks from NE China (including Wudalianchi, Jingbohu, Longgang, and
Changbaishan) (Zou et al., 2003, 2008), Hainan Island (Zou and Fan,
2010) and Ashikule volcanics from northern Tibet (Cooper et al.,
2002). The Tengchong volcanic rocks have (230Th/232Th) ratios ranging
from 0.303 to 0.376 and (238U/232Th) ratios ranging from 0.289 to 0.360.

Peate and Hawkesworth (2005) summarized the (238U/232Th)
values for lavas formed in various tectonic setting. MORB lavas have
(238U/232Th) between 0.9 and 1.6, subduction zone lavas have a wide
range of (238U/232Th) from 0.4 to 3.4, and within-plate lavas have
(238U/232Th) ranging from 0.4 to 1.2 (Peate and Hawkesworth, 2005).
Among within-plate lavas, continental potassic lavas have the lowest
(238U/232Th) between 0.4 and 0.7. For example, the (238U/232Th) values
are 0.396 to 0.421 for Gaussberg from Antarctica, 0.497 to 0.553 for
Ashikule lavas from N Tibet (Cooper et al., 2002), 0.605 to 0.683 for
Wudalianchi lavas (Zou et al., 2003), and 0.648 for Nyamuragira lavas
from East Africa (Pickett and Murrell, 1997). Note that the (238U/232Th)
values between 0.289 and 0.360 for Tengchong lavas from SE Tibet are
lower than reported values for young lavas from various tectonic settings
(intraplate, convergent margins and divergent margins) (Bourdon and
Sims, 2003; Lundstrom, 2003; Turner et al., 2003), including the Toba
lavas from Sunda arc known for low (238U/232Th) values (as low as
0.438) (Turner and Foden, 2001).

Since κTh is defined as (232Th/230Th)λ238/λ232 (Galer and O'Nions,
1985), the Tengchong lavas have very high κTh, ranging from 8.3 to
10.3 (Galer and O'Nions, 1985). Note that k represents 232Th/238U
ratio, and κTh from Th isotopes represents recent 232Th/238U in equilib-
rium with (230Th/232Th).

4. Discussion

4.1. Crustal contamination or mantle metasomatism?

One of the most challenging problems in the study of lavas from
continental setting is how to rigorously evaluate the potential role and
extent of crustal contamination during magma ascent. This assessment
is especially needed for the potassic lavas from Tengchong with low
εNd (−7) and high 87Sr/86Sr (0.707).

The predominant country rocks in Tengchong are granites, granodi-
orites, and amphibolites and these all have 206Pb/204Pb ratios higher
than those of the Tengchong volcanic rocks (Chen et al., 2002). The
Southeast Asian mantle source represented by the Thailand basalts
also has 206Pb/204Pb ratios higher than those of the Tengchong volcanic
rocks (Mukasa et al., 1996). Therefore, mixing of the Southeast Asian
mantle source with any of the above country rocks cannot explain the
Nd–Pb isotope systematics of the Tengchong volcanics (Fig. 8). As previ-
ously proposed by Chen et al. (2002), the Pb–Sr isotopic systematics of
the Tengchong lavas (Fig. 4 in Chen et al., 2002) also do not support
significant crustal contamination during magma ascent.

238U–230Th ages of zircons from Tengchong lavas provide significant
insights into potential crustal contamination. Zircons from Maanshan
volcanohave two age populations at 91 ka and 55 ka, significantly youn-
ger than any country rocks (ranging from Paleozoic to 32 Ma) (Zou
et al., 2010). Zircons from Dayingshan volcano also have ages of 58 ka
and 88 ka (Tucker et al., 2013). The absence of xenocrystic zircons
older than 300,000 years strongly suggests that crustal contamination
during the ascent of Tengchong magmas is not significant. Note that
the lithology of the country rocks, including Paleozoic gneisses, Carbon-
iferous sandstones, 76 to 235 Ma Mesozoic granite and 32 to 52 Ma
Cenozoic granites, is zircon rich. Thus, both Pb isotope compositions
and young ages of zircons from the Tengchong lavas do not support
significant crustal contamination. The enriched characteristics of the
Tengchong volcanic rocks are most likely inherited from partial melting
of an enriched mantle source.

4.2. 238U–230Th disequilibrium and mantle melting

The Maanshan volcano and Dayingshan volcano display small 230Th
excesses (4% to 6%) and the Heikongshan volcano has moderate 230Th
excesses (6% to 11%), which is in contrastwith significant 230Th excesses
in many primitive Holocene volcanic rocks from NE China (mostly 20%
to 33% 230Th excesses) and Hainan Island (18% to 32% 230Th excesses).
The ages of young zircon phenocrysts at Maanshan and Dayingshan
are 55 ka (Tucker et al., 2013; Zou et al., 2010) and can be regarded as
the age of magma formation (magma residence time + eruption age).
If we correct Tengchong Holocene lavas with magma formation time
of 55 ka (instead of eruption ages of b10 ka in Holocene), then all
samples had original 6%–10% 230Th excesses, except for one sample
(HS-9740-8) from Heikongshan with original 18% 230Th excess. The



Table 1
Major and trace element concentrations and Nd, Sr, Pb isotopic compositions.

Sample Maanshan Daying

MN-9704-1 MN-9704-1R MS-9738-1 MSW-9738-10 Ma2010-1 DSE-9723-2 DNW-9724-1 DNW-9724-2

SiO2 57.60 51.90 58.36 57.85 58.11 59.07 61.67
TiO2 1.20 1.45 1.13 1.23 1.10 1.13 0.98
Al2O3 16.63 17.04 16.36 16.91 16.81 16.49 16.05
FeO 6.03 9.32 6.23 6.08 6.34 6.88 5.70
MnO 0.11 0.16 0.09 0.11 0.10 0.10 0.09
MgO 3.62 5.49 3.18 3.49 2.68 2.91 2.35
CaO 5.62 7.99 3.18 6.04 4.84 5.23 4.30
Na2O 3.81 3.42 3.43 3.79 3.08 3.42 3.29
K2O 3.35 1.79 3.57 3.34 3.58 3.59 4.05
P2O5 0.47 0.34 0.43 0.48 0.43 0.45 0.38
Loss 0.80 1.03 0.40 2.31 0.47 0.69
Total 98.43 99.70 99.37 99.73 99.38 100.03 99.55
K2O + Na2O 7.16 5.21 7.00 7.13 6.66 7.01 7.34
FeO*/MgO 1.67 1.70 1.96 1.74 2.36 2.36 2.43
La 63.65 63.89 67.50 66.12 66.15 81.37 78.70 81.51
Ce 121.19 121.73 126.20 123.84 124.03 154.08 148.46 155.38
Pr 13.15 13.17 13.85 13.49 13.61 16.92 16.32 16.63
Nd 47.22 47.23 48.64 47.92 48.57 59.29 57.64 58.28
Sm 8.52 8.49 8.59 8.40 8.52 10.17 9.97 9.81
Eu 1.95 1.92 1.90 1.84 2.01 2.07 2.11 1.90
Gd 6.96 6.82 6.75 6.76 6.71 7.68 7.57 7.59
Tb 1.02 1.01 1.00 0.99 1.01 1.11 1.08 1.11
Dy 5.87 5.77 5.75 5.62 5.80 6.19 6.14 6.07
Ho 1.11 1.11 1.09 1.08 1.13 1.15 1.15 1.16
Er 2.96 2.89 2.90 2.88 2.98 2.98 2.96 2.97
Tm 0.42 0.41 0.43 0.41 0.43 0.43 0.42 0.42
Yb 2.55 2.57 2.53 2.54 2.62 2.57 2.52 2.65
Lu 0.39 0.40 0.39 0.41 0.41 0.40 0.39 0.40
Ba 794 797 780 929 801 1020 1013 882
Th 22.55 22.71 23.85 24.83 21.44 29.66 26.03 32.47
Nb 27.69 27.69 26.71 27.07 27.63 28.43 27.99 27.54
Y 28.34 28.07 28.32 28.19 29.38 29.87 29.58 29.74
Hf 6.38 6.42 6.45 6.52 6.48 8.10 8.07 8.01
Ta 2.12 2.15 1.64 2.40 1.63 1.80 1.66 1.69
U 2.53 2.55 2.61 2.71 2.43 2.82 2.57 3.12
Pb 17.20 17.48 20.26 20.70 18.47 25.95 23.94 24.91
Rb 97.4 99.0 102.8 105.5 94.8 116.5 107.7 140.1
Cs 1.05 1.08 1.75 1.77 1.33 2.35 1.36 1.83
Sr 590 587 560 540 601 510 549 475
Sc 14.1 14.7 14.0 14.5 15.3 12.7 13.6 11.3
Zr 254 255 252 254 272 314 312 308
Th/U 8.9 8.9 9.1 9.2 8.8 10.5 10.1 10.4
Ce/Pb 7.0 7.0 6.2 6.0 6.7 5.9 6.2 6.2
Nb/U 10.9 10.9 10.2 10.0 11.4 10.1 10.9 8.8
Ba/Th 35 35 33 37 37.4 34 39 27
Sr/Th 26 26 23 22 28 17 21 15
Sr/Y 21 21 20 19 20 17 19 16
87Sr/86Sr 0.707540 0.706583 0.707545 0.708782
2SE 0.000012 0.000013 0.000009 0.000009
143Nd/144Nd 0.512282 0.512370 0.512263 0.512187
2SE 0.000007 0.000014 0.000008 0.000013
Epsilon Nd −6.9 −5.2 −7.3 −8.8
206Pb/204Pb 18.161 18.133 18.186
207Pb/204Pb 15.684 15.653 15.709
208Pb/204Pb 39.190 39.090 39.256
208Pb*/206Pb* 1.10 1.09 1.10
KPb 4.47 4.43 4.47
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minor to moderate 230Th excesses from all three youngest volcanoes at
Tengchong may suggest the dominant role of mantle decompression
melting rather than fluid addition inmagmageneration. The association
of such 230Th excesses with lavas erupted through thick continental
crust rather than thin oceanic crust is consistent with the influence of
the thickness of the overlying lithosphere on the mantle dynamics and
partial melting within the wedge (George et al., 2003; Peate and
Hawkesworth, 2005; Plank and Langmuir, 1988; Turner et al., 2003). Al-
though direct slabmeltingmay explain the 230Th excesses of lavas in the
Austral Andes (Sigmarsson et al., 1998) and in the central Kamchakan
(Dosseto et al., 2003) where the subducting slab is young and hot, the
slab beneath Tengchong is an old one. Thus we attribute the 230Th
excesses in Tengchong lavas to mantle decompression melting rather
than direct slab melting.

The mantle minerals that control U and Th partitioning during
partial melting are clinopyroxene and garnet. Garnet is the dominant
mineral phase in themantlewhere thorium is significantlymore incom-
patible than uranium (DTh b DU) during mantle melting (Beattie, 1993;
LaTourrette et al., 1993; Salters and Longhi, 1999). Partial melting of
garnet peridotites in the garnet stability field (N2.5 GPa, or 75 km) can
produce 230Th excesses. As for clinopyroxene, high-Al2O3 clinopyroxene
can produce 230Th excesses at pressure N1.5 GPa (about 50 km depth),



Daying Heikong

DC-9724-5 DA-09026 HS-9719-1 HS-9719-1R HE-9740-1 HS-9740-8 HE-10009

62.24 61.50 60.91 60.71 50.47 58.43 54.36
0.93 1.01 0.98 0.97 1.41 1.10 1.43

16.01 16.27 15.28 15.24 17.75 16.36 17.26
5.45 5.22 5.03 5.03 8.62 6.12 8.17
0.09 0.092 0.09 0.09 0.14 0.11 0.14
2.14 2.43 2.81 2.81 5.76 3.73 4.5
4.11 4.54 4.39 4.36 6.69 5.56 6.84
3.42 3.60 3.47 3.45 3.08 3.48 4.03
4.09 4.02 3.90 3.87 2.19 3.43 2.7
0.35 0.40 0.68 0.68 0.36 0.42 0.39
0.43 3.38 0.56

99.26 99.09 97.55 97.21 99.85 99.30 99.82
7.51 7.62 7.37 7.32 5.27 6.91 6.73
2.55 2.14 1.79 1.79 1.50 1.64 1.82

79.22 86.76 67.66 34.62 72.64 46.13
151.39 166.35 128.41 66.48 137.43 88.38
16.37 17.77 14.04 7.52 14.92 9.97
57.19 61.53 49.15 28.25 54.07 36.10
9.79 10.38 8.75 5.83 9.34 6.92
1.82 1.98 1.70 1.64 2.01 1.81
7.40 7.57 6.78 5.53 7.20 6.20
1.08 1.12 0.99 0.88 1.03 0.99
5.97 6.16 5.53 5.23 5.74 5.88
1.14 1.17 1.06 1.06 1.09 1.17
3.00 3.06 2.70 2.74 2.81 3.09
0.43 0.44 0.39 0.39 0.39 0.44
2.60 2.63 2.44 2.42 2.37 2.69
0.40 0.41 0.38 0.37 0.36 0.42

865 933 836 453 930 521.00
34.32 33.48 28.58 12.14 21.85 17.78
27.60 28.47 27.51 21.07 27.97 23.41
29.27 30.14 27.06 26.33 27.56 29.94
8.13 8.06 7.79 4.47 7.81 5.28
2.69 1.76 1.71 1.27 2.47 1.40
3.32 3.22 3.28 1.33 2.41 1.73

25.57 26.67 26.51 9.26 19.90 13.15
150.3 136.5 136.0 43.8 101.9 57.20

2.02 1.72 1.79 1.21 1.05 0.70
445 457 419 475 556 451
10.9 13.5 12.9 21.2 14.5 20.7

303 329 300 181 308 225
10.3 10.4 8.7 9.1 9.1 10.3
5.9 6.2 4.8 7.2 6.9 6.7
8.3 8.9 8.4 15.9 11.6 13.5

25 28 29 37 43 29
13 14 15 39 25 25
15 15 16 18 20 15
0.708971 0.705723 0.708553
0.000013 0.000013 0.000011
0.512121 0.512410 0.512213
0.000014 0.000014 0.000012

−10.1 −4.4 −8.3
18.044
15.647
39.051
1.10
4.45
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but generate 238U excesses at pressure b1.5 GPa (Landwehr et al., 2001;
Wood et al., 1999). Unlike high Al2O3 clinopyroxene, calcic clinopyroxene
consistently produces 238U excesses. The 230Th excesses in the Tengchong
lavas suggest melting in the presence of high-pressure aluminous
clinopyroxene (at depth greater than 50 km depth) and/or in the
presence of garnet at depth greater than 75 km to 90 km. Note that
these Tengchong volcanics also have relatively high Sr/Y ratios ranging
from 15 to 21 (Table 1), consistent with deepmeltingwith garnet as a re-
sidual phase, as garnet retains Y but Sr goes into melt.

We suggest that partial melting initiated in the presence of garnet at
depths greater than 75 km to 90 km. This is supported by recent
tomographical studies that have revealed a low-velocity zone at depths
up to 150 km (Li et al., 2008) to 300 km (Huang and Zhao, 2006; Lei
et al., 2013) below Tengchong. If the low-velocity zone represents
melt generation zone for Tengchong volcanoes, then the 230Th excesses
in the Tengchong lavas mostly likely indicate partial melting in the
uppermantle in the garnet stability field. Note that trace element inver-
sion results also support for a role of residual garnet in the source region
during melting in some areas of the main Tibetan Plateau (Gao et al.,
2009; Williams et al., 2004).

In comparison with the Tengchong volcanics from SE Tibetan
Plateau, the Ashikule volcanics fromNWTibetan Plateau (Fig. 1) display



Fig. 2. Total alkali (K2O + Na2O) versus SiO2 for the volcanic rocks from Maanshan,
Dayingshan and Heikongshan of Tengchong. Data sources for other published Tengchong
volcanic rocks: Wang et al. (2006), Zhao and Fan (2010), Zhou et al. (2012), Zhu et al.
(1983), Zou et al. (2010). Major element data have been recalculated on a volatile free basis.

b

a

Fig. 3. (a) AFM diagram forMaanshan, Dayingshan, and Heikongshan. (b) K2O versus SiO2

diagram.

Fig. 4. Chondrite-normalized rare earth element diagram for Maanshan, Dayingshan, and
Heikongshan.
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more pronounced initial 230Th (mostly 14% to 36%) excesses (Cooper
et al., 2002). It is therefore likely that themelting conditions to generate
Tengchong and Ashikule volcanics were different. The Tengchong lavas
with smaller 230Th excesses were generated by faster melting rates and
higher melting porosities as compared with the Ashikule lavas (Fig. 9).
4.3. Ultra-high Th/U magmas and metasomatism by subducted clay-rich
sediments

All Tengchong samples have very high Th/U ratios. Their Th/U ratios
measured at National Taiwan University by isotope dilutionMC-ICP-MS
and at Washington State University by quadrupole ICP-MS using sepa-
rate sample dissolutions are identical within 5%. Before we attribute
their high Th/U ratios to their mantle source characteristics, we need
to demonstrate that their high Th/U ratios do not result from (1) incom-
plete zircon dissolution and (2) crustal-level fractionation of zircons.
Because zircons have low Th/U ratios, incomplete zircon dissolution or
crustal-level fractionation of zircons increases Th/U ratios in melts.
However, there is no correlation between Th/U and SiO2 (Fig. 10) for
the Tengchong lavas. Th/U ratios in zircon-containing samples with
high SiO2 are similar to those zircon-absent samples with low SiO2,
which argues against incomplete zircon dissolution or crustal-level
fractionation of zircons.
Fig. 5. Primitivemantle normalized trace element diagram forMaanshan, Dayingshan and
Heikongshan.
Normalizing values are from McDonough and Sun (1995).
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Fig. 6. 143Nd/144Nd versus 87Sr/86Sr diagram. DMM= depletedMORBmantle (Zindler and
Hart, 1986); SE China basalts (Tu et al., 1991; Zou and Fan, 2010; Zou et al., 2000);
Thailand basalts (Mukasa et al., 1996).
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Dynamic partial melting (McKenzie, 1985) or porous flow
(Spiegelman and Elliott, 1993) may significantly fractionate 230Th
from 238U owing to the 230Th ingrowth from parental 238U. However,
these processes do not significantly fractionate 232Th from 238U
(Williams et al., 1992; Zou and Zindler, 2000). Unlike 230Th, 232Th
has no parent–daughter relationship with 238U and thus no ingrowth
during melting and transport. Therefore, the ultra-high elemental
Th/U ratios in Tengchong lavas cannot be caused by Th/U partitioning
during partial melting or melt transport, but are likely to reflect the
characteristics of the mantle source itself.

The Tengchong lavas have ultra-high Th/U ratios (9.50± 0.69), even
higher than somewell-known high Th/U lavas, such as Gaussberg lavas
(7.55 ± 0.05) (Williams et al., 1992), Ashikule lavas (5.80 ± 0.20)
(Cooper et al., 2002) and Wudalianchi lavas (4.65 ± 0.18) (Zou et al.,
2003). In comparison, continental upper crust, middle crust and lower
crust have average Th/U ratios of 3.8, 4.9 and 6.0, respectively
(Rudnick and Gao, 2003) and bulk silicate earth has Th/U ratio of 3.9
(McDonough and Sun, 1995).

Since subduction-related fluids are enriched in U relative to Th, the
ultra-high Th/U ratios in the Tengchong lavas do not suggest significant
Table 2
Uranium and thorium isotopic compositions.

Sample ID U, ppm Th, ppm (238U/232Th)

Maanshan
MN-9704-1 2.30 ± 0.01 19.67 ± 0.03 0.355 ± 0.002
MSW-9738-1 2.291 ± 0.007 19.96 ± 0.03 0.348 ± 0.001
MSW-9738-1a 2.34 ± 0.02 20.6 ± 0.2 0.346 ± 0.005
MA2010-1 2.104 ± 0.006 17.71 ± 0.03 0.360 ± 0.001

Dayingshan
DSE9723-2 2.689 ± 0.008 26.81 ± 0.03 0.304 ± 0.001
DNW-9724-1 2.520 ± 0.005 23.76 ± 0.08 0.322 ± 0.001
DNW-9724-2 3.040 ± 0.007 30.89 ± 0.04 0.299 ± 0.001
DC-9724-5 2.939 ± 0.007 30.88 ± 0.04 0.289 ± 0.001

Heikongshan
HE-9740-1 1.312 ± 0.006 11.88 ± 0.01 0.335 ± 0.002
HS-9740-8 2.602 ± 0.009 23.21 ± 0.03 0.340 ± 0.001
TML 9.64 ± 0.02 27.29 ± 0.03 1.072 ± 0.002

Chemistry was performed following methods in Shen et al. (2003), and instrumental analysis
Analytical errors are 2σ of the mean.
Activity ratios calculated using decay constants of 9.1577 × 10−6 year−1 for 230Th, 4.9475
1.55125 × 10−10 year−1 for 238U (Jaffey et al., 1971).
TML: Table Mountain Latite, a rock reference material for uranium-series community.

a A duplicate measured at UCLA using TIMS (from separate dissolution).
fluid additions. Instead, the ultra-high Th/U ratios may indicate contri-
butions from sediment melts with high Th/U ratios.

Our data can provide further insights on the lithology of the
subducted sediments. Th/U ratios in subducting sediments can vary
from greater than 10 to less than 1 (Plank and Langmuir, 1998). High
Th/U ratios reflect a mature weathered source whereas low Th/U ratios
indicate immature continental sediments or organic rich sediments
(Plank and Langmuir, 1998). Such ultra-high Th/U sediments must be
clay-rich mature sediments or mudstones, because clay-rich mature
sediments or mudstones might be the main mature sediments with
very high Th/U ratios after extensiveweathering to remove U and retain
Th. For example, pelagic clays from Indian Ocean have Th/U ratios
of 9.0–10.5 (Ben Othman et al., 1989). A recent high-pressure experi-
mental study (Rapp et al., 2008) indicates the formation of high Th/U
K-hollandite from a marine mud sample in the deep mantle. Neither
sandstones nor limestones have high Th/U ratios. Thus, our study
provides strong evidence for recycling of clay-rich mature sediment or
mudstone melts into the mantle source to form enriched mantle
below Tengchong.

Melts derived from such subducted clay-rich sediments may react
with depleted mantle at depth, producing phlogopite-bearing pyroxe-
nites at the expense of olivine (Prelevic et al., 2013; Sekine and Wyllie,
1983). This process results in regions of heterogeneous mantle
consisting of enriched phlogopite- and garnet-bearing pyroxenites
within depleted peridotite mantle in the subcontinental lithospheric
mantle. Deep melting of such heterogeneous mantle produces moder-
ate 230Th excesses.

The mantle beneath the Tibetan Plateau was affected by Neo-
Tethyan oceanic subduction prior to the collision of India and Asia and
was followed by the subduction of Indian continental crust beneath
Asia after the collision (Mo et al., 2007; Zhao et al., 2009). The
Tengchong region of SE Tibetan Plateau is different because, unlike
other parts of the Tibetan Plateau, subduction of the Indian continental
crust was followed by the subduction of the Indian oceanic plate be-
neath Tengchong and Burma. A stagnant slab with high-V anomaly in
themantle transition zone below Tengchong as detected by seismic im-
aging (Lei et al., 2009, 2013; Zhao and Liu, 2010) might represent the
subducted Indian oceanic slab. The clay-rich sediment melt component
in the Tengchong lavas may be derived from the stagnant slab beneath
Tengchong and/or from the earlier subduction of Indian continental
crust. The inferred Precambrian Nd model age (1.1 Ga) may actually
reflect the inheritance of isotopic signatures from melts derived from
such subducted clay-rich sediments, rather than the time when the
(230Th/232Th) (234U/238U) (230Th/238U) KTh

0.373 ± 0.002 1.016 ± 0.012 1.048 ± 0.007 8.39
0.364 ± 0.002 0.975 ± 0.009 1.046 ± 0.006 8.58
0.359 ± 0.004 – 1.04 ± 0.02 8.73
0.374 ± 0.002 1.003 ± 0.005 1.037 ± 0.006 8.37

0.323 ± 0.002 0.989 ± 0.007 1.061 ± 0.006 9.67
0.338 ± 0.002 0.998 ± 0.006 1.050 ± 0.007 9.25
0.310 ± 0.002 0.978 ± 0.006 1.038 ± 0.006 10.1
0.303 ± 0.002 – 1.048 ± 0.006 10.3

0.356 ± 0.002 1.020 ± 0.008 1.062 ± 0.008 8.78
0.376 ± 0.002 1.000 ± 0.011 1.107 ± 0.007 8.30
1.067 ± 0.005 1.002 ± 0.005 0.995 ± 0.005 2.93

on MC-ICP-MS (Shen et al., 2012).

× 10−11 year−1 for 232Th, 2.8263 × 10−6 year−1 for 234U (Cheng et al., 2000), and

image of Fig.�6


Fig. 7. (230Th/232Th) versus (238U/232Th) equiline diagram. Data sources: this paper;
Cooper et al. (2002), Zou and Fan (2010), Zou et al. (2008), Zou et al. (2003). Decay
constants: Cheng et al. (2000), Jaffey et al. (1971).

Fig. 9. Estimates ofmaximummelting rate andmaximummeltingporosity fromU–Th dis-
equilibrium data (Zou, 2007) for Tengchong and Ashikule volcanics. Most Tengchong vol-
canics have initial (230Th/238U) of 1.06 to 1.10 and most Ashikule volcanics have initial
(230Th/238U) of 1.14 to 1.36. Bulk partition coefficients are DU = 0.005 and DTh = 0.003
for garnet peridotites. Bulk partition coefficients are given by Di = ∑Kixi, where Ki is
the mineral/melt partition coefficient, and xi is its mineral proportion in the source.
Mineral/melt partition coefficients are: KTh(gt) = 0.019, KU(gt) = 0.041, KTh(opx) =
0.0002, KU(opx) = 0.0005 (Salters and Longhi, 1999), KTh(cpx) = 0.015, KU(cpx) =
0.010 (Lundstrom et al., 1994), and KTh(ol) = KU(ol) = 0.0001 (assumed). Mineral
proportions are: xol = 61%, xopx = 22%, xgt = 10%, and xcpx = 7%. Mineral abbreviations:
gt = garnet, opx = orthopyroxene, cpx = clinopyroxene, and ol = olivine. Melting of a
garnet pyroxenite source (with more garnet) rather than a garnet peridotite source
would imply higher melting rate and/or porosity for a given (230Th/238U).
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lithosphere became isolated from asthenospheric convection. Because
of the extremely complex Phanerozoic tectonic andmagmatic evolution
of Tibet (Ding et al., 2003), it is unlikely that enriched Precambrianman-
tle lithosphere has remained geochemically isolated and physically
intact beneath Tibet for more than 1 Gyr. The composition of any pre-
existing Precambrian mantle lithosphere would have been altered by
the northward subduction of the Tethyan oceanic lithosphere beneath
Tibet during the Mesozoic. In addition, the complete lack of correlation
between Th/U and 208Pb*/206Pb* also argues for a youngmantle source.
We note that some older volcanic rocks on Tibetan Plateau also
have very high Th/U ratios. Although they are too old to preserve
238U–230Th disequilibrium, their high Th/U ratios may also indicate
that their mantle sources may be also related to the subduction of
mature clay-rich sediments or mudstones.
Fig. 8. 143Nd/144Nd versus 206Pb/204Pb diagram. Data sources: Tengchong volcanic rocks
(this paper; Chen et al., 2002; Wang et al., 2006; Zhao and Fan, 2010; Zou et al., 2003);
local crustal materials of amphibolites, granodiorites and granites (Chen et al., 2002);
Thailand basalts (Mukasa et al., 1996). SinceNd andPb concentrations for local crustalma-
terials are not available in Chen et al. (2002), quantitativemixing curves are not calculated
here.
5. Conclusions

1. The Tengchong samples are characterized by their extremely low
(230Th/232Th) and (238U/232Th) ratios. They display small tomoderate
(4% to 10%) 230Th excesses.

2. The 230Th excesses in the Tengchong lavas, along with geophysical
data, suggest that melting initiated at depths greater than 75 km in
the garnet stability field.

3. The ultra-high Th/U ratios in Tengchong lavas indicate recycling of
continentally-derived clay-rich mature sediments into the mantle.
The Tengchong lavas are derived from the lithospheric mantle that
had been metasomatized by clay-rich sediment melts prior to
melting. The high 208Pb/204Pb, high 87Sr/86Sr and low 143Nd/144Nd
Fig. 10. Th/U versus SiO2 plot.
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ratios of the Tengchong lavas may reflect inheritance from clay-rich
sediments that were derived from pre-existing continental crust.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.lithos.2014.01.017.
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